首页> 外文OA文献 >Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains
【2h】

Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains

机译:一些时空分数随机变量的非线性噪声激励   有界域中的方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study non-linear noise excitation for the following class ofspace-time fractional stochastic equations in bounded domains:$$\partial^\beta_tu_t(x)=-\nu(-\Delta)^{\alpha/2} u_t(x)+I^{1-\beta}_t[\lambda\sigma(u)\stackrel{\cdot}{F}(t,x)]$$ in $(d+1)$ dimensions, where $\nu>0,\beta\in (0,1)$, $\alpha\in (0,2]$. The operator $\partial^\beta_t$ is theCaputo fractional derivative, $-(-\Delta)^{\alpha/2} $ is the generator of anisotropic stable process and $I^{1-\beta}_t$ is the fractional integraloperator. The forcing noise denoted by $\stackrel{\cdot}{F}(t,x)$ is a Gaussiannoise. The multiplicative non-linearity $\sigma:\RR{R}\to\RR{R}$ is assumed tobe globally Lipschitz continuous. These equations were recently introduced byMijena and Nane(J. Mijena and E. Nane. Space time fractional stochastic partialdifferential equations. Stochastic Process Appl. 125 (2015), no. 9,3301--3326). We first study the existence and uniqueness of the solution ofthese equations {and} under suitable conditions on the initial function, we{also} study the asymptotic behavior of the solution with respect to theparameter $\lambda$. In particular, our results are significant extensions ofthose in Foondun et al (M. Foondun, K. Tian and W. Liu. On some properties of aclass of fractional stochastic equations. Preprint available at arxiv.org1404.6791v1.), Foondun and Khoshnevisan (M. Foondun and D. Khoshnevisan.Intermittence and nonlinear parabolic stochastic partial differentialequations, Electron. J. Probab. 14 (2009), no. 21, 548--568.), Nane and Mijena(J. Mijena and E. Nane. Space time fractional stochastic partial differentialequations. Stochastic Process Appl. 125 (2015), no. 9, 3301--3326; J. B.Mijena, and E.Nane. Intermittence and time fractional partial differentialequations. Submitted. 2014).
机译:在本文中,我们针对有界域中的以下一类时空分数随机方程,研究了非线性噪声激励:$$ \ partial ^ \ beta_tu_t(x)=-\ nu(-\ Delta)^ {\ alpha / 2} u_t(x)+ I ^ {1- \ beta} _t [\ lambda \ sigma(u)\ stackrel {\ cdot} {F}(t,x)] $$ in $ {d + 1)$维度,其中$ \ nu> 0,\ beta \ in(0,1)$,$ \ alpha \ in(0,2] $。运算符$ \ partial ^ \ beta_t $是Caputo分数导数,$-(-\ Delta) ^ {\ alpha / 2} $是各向异性稳定过程的生成器,$ I ^ {1- \ beta} _t $是分数积分算子。强迫噪声由$ \ stackrel {\ cdot} {F}(t, x)$是高斯噪声,乘性非线性$ \ sigma:\ RR {R} \ to \ RR {R} $假设是全局Lipschitz连续的,这些方程最近由Mijena和Nane(J。Mijena和E 。Nane。时空分数阶随机偏微分方程。随机过程应用125(2015),第9,3301--3326号)我们首先研究这些方程{和}的解的存在性和唯一性在初始函数的理想条件下,我们{还}研究了关于参数$ \ lambda $的解的渐近行为。特别是,我们的结果是Foondun等人(M. Foondun,K。Tian和W. Liu。关于一类分数阶随机方程的一些性质。预印本可在arxiv.org1404.6791v1。),Foondun和Khoshnevisan中得到的重大扩展。 (M.Foondun和D.Khoshnevisan。间歇性和非线性抛物线形随机偏微分方程,Electron.J.Probab.14(2009),第21,548--568号),Nane和Mijena(J.Mijena和E.Nane空时分数随机偏微分方程,随机过程应用125(2015),第9期,3301--3326; JBMijena和E.Nane。间歇性和时间分数偏微分方程,已提交,2014年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号